Indian Statistical Institute, BangaloreB. Math. (Hons.) Third YearSecond Semester - Differential Geometry IIMidterm ExamDate: March 02, 2018Maximum marks: 40Duration: 3 hours

Answer all questions. You may use Theorems stated/proved in the class after correctly stating them. You may use results not discussed in the class only after proving them.

- 1. let $A = \{(x_1, x_2, \dots, x_n) \in \mathbb{S}^{n-1} | x_1 \ge 0\}$ be the closed right half sphere.
 - (a) Use the stereographic projection, show that $A \setminus \{(0, 0, ...1)\}$ is diffeomorphic to the closed right-half space $\{y \in \mathbb{R}^{n-1} \times 0/y_1 \ge 0\}.$ [3]
 - (b) Given any $P \in \partial \mathbb{D}^{n-1}$, find a diffeomorphism $\partial : \mathbb{D}^{n-1} \to A$ such that $\partial(P) = (0, 0, ...1)$. [3]
 - (c) Conclude that if P is any point on the boundary of a closed disc \mathbb{D}^{n-1} , then $\mathbb{D}^{n-1} \setminus \{P\}$ is diffeomorphism to the closed upper-half space H^{n-1} . [2]
 - (d) Identify \mathbb{C} with \mathbb{R}^2 by the formula z = x + iy. Find the matrix of the derivative df(z) for $f : \mathbb{C} \to \mathbb{C}$, where $f(z) = z^n$, in the basis $\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\}$. [2]
- 2. (a) Recall that we have charts on \mathbb{RP}^2 given by

$$[x, y, z] \to (u_1, u_2) = (x/z, y/z) \text{ on } U_3 = \{z \neq 0\},\$$

 $[x, y, z] \to (v_1, v_2) = (x/y, z/y) \text{ on } U_2 = \{y \neq 0\},\$
 $[x, y, z] \to (w_1, w_2) = (y/x, z/x) \text{ on } U_1 = \{x \neq 0\}.$

Show that there is a vector field on \mathbb{RP}^2 which in the last coordinate chart above has the coordinate expression $w_1\partial/\partial w_1 - w_2\partial/\partial w_2$. What are the expressions for this vector field in the other two charts? [2 + 2 + 2 = 6]

- (b) Consider the vector field on $U = (0, \infty) \subset \mathbb{R}$ given by $X(x) = \frac{1}{x} \frac{d}{dx}$. Find the local flow associated to X and the maximal intervals of existence. Check that the defining properties of a local flow are satisfied for this example. [2 + 2 + 2 = 6]
- (c) Let $X \in \chi(\mathbb{R})$ be the vector field $X = e^t \frac{d}{dt}$.

- i. For $a \in \mathbb{R}$, compute the integral curve $\gamma_a : (-\epsilon_a, \delta_a) \to \mathbb{R}$ to X through a. (Be sure to specify its domain).
- ii. Find the flow determined by X. Is X a complete vector field? [2 + 2 = 4]
- 3. (a) On \mathbb{R}^3 , let X, Y, Z be the vector fields

$$\begin{split} X &= z \frac{\partial}{\partial y} - y \frac{\partial}{\partial z}, \\ Y &= -z \frac{\partial}{\partial x} + x \frac{\partial}{\partial z}, \\ Z &= y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}. \end{split}$$

Show that $aX + bY + cZ \to (a, b, c) \in \mathbb{R}^3$ is a Lie algebra isomorphism (from a certain set of vector fields to \mathbb{R}^3) and that $[U, V] \to$ the cross-product of the images of U and V. [4]

- (b) Give an example of a distribution which is not integrable. [2]
- 4. (a) Show that $GL(n, \mathbb{H})$ is path connected. [2]
 - (b) Prove that det(A) > 0 for all $A \in GL(n, \mathbb{H})$. [2]
 - (c) Show that the group $\mathbb{S}^3/\{-1,+1\}$ is isomorphic to SO(3). [4]